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By Shane T. Jensen, Kenneth E. Shirley and Abraham J. Wyner
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The use of statistical modeling in baseball has received substan-
tial attention recently in both the media and academic community.
We focus on a relatively under-explored topic: the use of statisti-
cal models for the analysis of fielding based on high-resolution data
consisting of on-field location of batted balls. We combine spatial
modeling with a hierarchical Bayesian structure in order to evaluate
the performance of individual fielders while sharing information be-
tween fielders at each position. We present results across four seasons
of MLB data (2002–2005) and compare our approach to other fielding
evaluation procedures.

1. Introduction. Many aspects of major league baseball are relatively
easy to evaluate because of the mostly discrete nature of the game: there are
a relatively small number of possible outcomes for each hitting or pitching
event. In addition, it is easy to determine which player is responsible for
these outcomes. Complicating and confounding factors exist—like ball parks
and league—but these differences are either small or averaged out over the
course of a season.

A player’s fielding ability is more difficult to evaluate, because fielding is
a nondiscrete aspect of the game, with players fielding balls-in-play (BIPs)
across the continuous playing surface. Each ball-in-play is either successfully
fielded by a defensive player, leading to an out (or multiple outs) on the play,
or the ball-in-play is not successfully fielded, resulting in a hit. An inherently
complicated aspect of fielding analysis is assessing the blame for an unsuc-
cessful fielding play. Specific unsuccessful fielding plays can be deemed to
be an “error” by the official scorer at each game. These assigned errors are
easy to tabulate and can be used as a rudimentary measure for comparing
players. However, errors are a subjective measure [Kalist and Spurr (2006)]
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that only tell part of the story. Additionally, errors are only reserved for
plays where a ball-in-play is obviously mishandled, with no corresponding
measure for rewarding players for a particularly well-handled fielding play.
Most analysts agree that a more objective measure of fielding ability is the
range of the fielder, though this quality is hard to measure. If a batted ball
sneaks through the left side of the infield, for example, it is very difficult to
know if a faster or better positioned shortstop could have reasonably made
the play. Confounding factors such as the speed and trajectory of the batted
ball and the quality and range of adjacent fielders abound.

Furthermore, because of the large and continuous playing surface, the
evaluation of fielding in major league baseball presents a greater modeling
challenge than the evaluation of offensive contributions. Previous approaches
have addressed this problem by avoiding continuous models and instead
discretizing the playing surface. The Ultimate Zone Rating (UZR) is based
on a division of the playing field into 64 large zones, with fielders evaluated
by tabulating their successful plays within each zone [Lichtman (2003)].
The Probabilistic Model of Range (PMR) divides the field into 18 pie slices
(every 5 degrees) on either side of second base, with fielders evaluated by
tabulating their successful plays within each slice [Pinto (2006)]. Another
similar method is the recently published Plus-Minus system [Dewan (2006)].
The weakness of these methods is that each zone or slice is quite large, which
limits the extent to which differences between fielders are detectable, since
every ball hit into a zone is treated equally.

Our methodology addresses the continuous playing surface by modeling
the success of a fielder on a given BIP as a function of the location of that
BIP, where location is measured as a continuous variable. We fit a hier-
archical Bayesian model to evaluate the success of each individual fielder,
while sharing information between fielders at the same position. Hierarchical
Bayesian models have also recently been used by Reich et al. (2006) to esti-
mate the spatial distribution of basketball shot chart data. Our ultimate goal
is to produce an evaluation by estimating the number of runs that a given
fielder saves or costs his team during the season compared to the average
fielder at his position. Since this quantity is not directly observed, it cannot
be used as the outcome variable in a statistical model. Therefore, our eval-
uation requires two steps. First, we model the binary variable of whether a
player successfully fields a given BIP (an outcome we can observe) as a func-
tion of the BIP location. Then, we integrate over the estimated distribution
of BIP locations and multiply by the estimated consequence of a successful
or unsuccessful play, measured in runs, to arrive at our final estimate of the
number of runs saved or cost by a given fielder in a season.

We present our Bayesian hierarchical model implemented on high-resolution
data in Section 2. In Section 3 we illustrate our method using one partic-
ular position and BIP type as an example. In Section 4 we describe the
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Fig. 1. Contour plots of estimated 2-dimensional densities of the 3 BIP types, using all
data from 2002–2005. Note that the origin is located at home plate, and the four bases
are drawn into the plots as black dots, where the diagonal lines are the left and right foul
lines. The outfield fence is not drawn into the plot, because the data come from multiple
ballparks, each with its outfield fence in a different place. The units of measurement for
both axes are feet.

calculations we make to convert the parameter estimates from the Bayesian
hierarchical model to an estimate of the runs saved or cost. In Section 5
we present our integrated results, and we compare our results to those from
a representative previous method, UZR, in Section 6. We conclude with a
discussion in Section 7.

2. Bayesian hierarchical model for individual players.

2.1. The data. Our fielding evaluation is based upon high-resolution data
collected by Baseball Info Solutions [BIS (2007)]. Every ball put into play
in a major league baseball game is mapped to an (x, y) coordinate on the
playing field, up to a resolution of approximately 4 × 4 feet. Our research
team collected samples from several companies that provide high-resolution
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Table 1

Summary of models

BIP-type Flyballs Liners Grounders

Position 1B 1B 1B
2B 2B 2B
3B 3B 3B
SS SS SS
LF LF
CF CF
RF RF

data and after watching replays of several games, we decided to use the BIS
data since it appeared to be the most accurate. We have four seasons of data
(2002–2005), with around 120,000 balls-in-play (BIP) per year. These BIPs
are classified into three distinct types: flyballs (33% of BIP), liners (25%
of BIP) and grounders (42% of BIP). The flyballs category also includes
infield and outfield pop-ups. Figure 1 displays the estimated 2-dimensional
density of each of the three BIP types, plotted on the 2-dimensional playing
surface. The areas of the field with the highest density of balls-in-play are
indicated by the contour lines which are in closest proximity to each other.
Not surprisingly, the high-density BIP areas are quite different between the
three BIP types. For flyballs and liners, the location of each BIP is the (x, y)-
coordinate where the ball was either caught (if it was caught) or where the
ball landed (if it was not caught). For grounders, the (x, y)-location of the
BIP is set to the location where the grounder was fielded, either by an
infielder or an outfielder (if the ball made it through the infield for a hit).

2.2. Overview of our models. The first goal of our analysis is to proba-
bilistically model the binary outcome of whether a fielder made a “successful
play” on a ball batted into fair territory. We fit a separate model for each
combination of year (2002–2005), BIP type (flyball, liner, grounder) and po-
sition. Table 1 contains a listing of the models we fit classified by position
and BIP type. Pitchers and catchers were excluded due to a lack of data.
Also note that fly balls and liners are modeled for all seven remaining po-
sitions, whereas grounders are only modeled for the infield positions. This
gives us eighteen models to be fit within each of the four years, giving us
18 × 4 = 72 total model fits. The inputs available for modeling include the
identity of the fielder playing the given position, the location of the batted
ball, and the approximate velocity of the batted ball, measured as an ordi-
nal variable with three levels (the velocity variable is estimated by human
observation of video, not using any machinery). For flyballs and liners, a
successful play is defined to be a play in which the fielder catches the ball in
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the air before it hits the ground. For grounders, a successful play is defined
to be a play in which the fielder fields the grounder and records at least
one out on the play. Grounders and Flyballs/Liner BIPs are fundamentally
different in the way their location data is recorded, as outlined below, which
affects our modeling approach.

1. Flyballs and liners: For flyballs and liners, the (x, y)-location of the BIP
is set to the location where the ball was either caught (if it was caught)
or where the ball landed (if it was not caught). We model the probability
of a catch as a function of the distance a player had to travel to reach
the BIP location, the direction he had to travel (forward or backward)
and the velocity of the BIP. Our flyball/liner distances must incorporate
two dimensions since a fielder travels across a two-dimensional plane (the
playing field) to catch the BIP.

2. Grounders: For grounders, the (x, y)-location of the BIP is set to the
location where the grounder was fielded, either by an infielder or an out-
fielder (if the ball made it through the infield for a hit). As we did with
flyballs/liners, we model the probability of an infielder successfully field-
ing a grounder as a function of the distance, direction and velocity of the
grounder. For grounders, however, distance is measured as the angle, in
degrees, between the trajectory of the groundball from home plate and
the (imaginary) line drawn between the infielder’s starting location and
home plate, with direction being factored in by allowing different proba-
bilities for fielders moving the same number of degrees to the left or the
right. The grounder distance only must incorporate one dimension since
the infielder travels along a one-dimensional path (arc) in order to field
a grounder BIP.

Figure 2 gives a graphical representation of the difference in our approach
between grounders and flys/liners. It is worth noting, however, that the
distance (for flyballs/liners) or angle (for grounders) that a fielder must
travel in order to reach a BIP is actually an estimated value, since the
actual starting location of the fielder for any particular play is not included
in the data. Instead, the starting location for each position is estimated as the
location in the field where each position has the highest overall proportion of
successful plays. The distance/angle traveled for each BIP is then calculated
relative to this estimated starting position for each player.

2.3. Model for flyballs/liners using a two-dimensional spatial representa-
tion. We present our model below in the context of flyballs (which also
include infield pop-ups), but the same methodology is used for liners as
well. For a particular fielder i, we denote the number of BIPs hit while that
player was playing defense ni. The outcome of each play is either a success
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Fig. 2. Two-dimensional representation for flyballs and liners versus one-dimensional
representation for grounders.

or failure:

Sij =
{

1, if the jth flyball hit to the ith player is caught,
0, if the jth flyball hit to the ith player is not caught.

These observed successes and failures are modeled as Bernoulli realizations
from an underlying event-specific probability:

Sij ∼ Bernoulli(pij).(1)

As mentioned above, the available covariates are the (x, y) location and
the velocity Vij of the BIP. Although the velocity is an ordinal variable
Vij = {1,2,3}, we treat velocity as a continuous variable in our model in order
to reduce the number of coefficients included. The Bernoulli probabilities pij

are modeled as a function of distance Dij traveled to the BIP, velocity Vij

and an indicator for the direction Fij the fielder has to move toward the
BIP (Fij = 1 for moving forward, Fij = 0 for moving backward):

pij =Φ(βi0 + βi1Dij + βi2DijFij + βi3DijVij + βi4DijVijFij)
(2)

=Φ(Xij ·βi),

where Φ(·) is the cumulative distribution function for the Normal distribu-
tion and Xij is a vector of the covariate terms in equation (2). Note that
the covariates Dij and Fij are themselves functions of the (x, y) coordinates
for that particular BIP. This model is recognizable as a probit regression
model with interactions between covariates that allow for different proba-
bilities for moving the same distance in the forward direction versus the
backward direction. We can give natural interpretations to the parameters
of this fly/liner probit model. The βi0 parameter controls the probability
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of a catch on a fly/liner hit directly at a fielder (Dij = 0). The βi1 and βi2

parameters control the range of the fielder, moving either backward (βi1)
or forward (βi2) toward a fly/liner. The parameters βi3 and βi4 adjust the
probability of success as a function of velocity.

2.4. Model for grounders using a one-dimensional spatial representation.
The outcome of each grounder BIP is either a success or failure:

Sij =
{

1, if the jth grounder hit to the ith player is fielded successfully,
0, if the jth grounder hit to the ith player is not fielded successfully.

Grounders have a similar observed data level to their model,

Sij ∼Bernoulli(pij),(3)

except that the underlying probabilities pij are modeled as a function of
angle θij between the fielder and the BIP location, the velocity Vij of the
BIP, and an indicator for the direction Lij the fielder has to move toward
the BIP (Lij = 1 for moving to the left, Lij = 0 for moving to the right):

pij =Φ(βi0 + βi1θij + βi2θijLij + βi3θijVij + βi4θijVijLij)
(4)

=Φ(Xij ·βi).

Again Φ(·) represents the cumulative distribution function for the Normal
distribution and Xij is a vector of the covariate terms in equation (4). We can
also give natural interpretations of the parameters in this grounder probit
model. The βi0 parameter controls the probability of a catch on a grounder
hit directly at the fielder (Dij = 0). The βi1 and βi2 parameters control the
range of the fielder, moving either to the right (βi1) or to the left (βi2) toward
a grounder. The parameters βi3 and βi4 adjust the probability of success as
a function of velocity.

2.5. Sharing information between players. We can calculate parameter
estimates βi for each player i separately using standard probit regression
software. However, we will see in Section 3.2 below that these parameter esti-
mates βi can be highly variable for players with small sample sizes (i.e., those
players who faced a small number of BIPs in a given year). This problem can
be addressed by using a hierarchical model where each set of player-specific
coefficients βi are modeled as sharing a common prior distribution. This hi-
erarchical structure allows for information to be shared between all players
at a position, which is especially important for players with smaller numbers
of opportunities. Specifically, we model each player-specific coefficient as a
draw from a common distribution shared by all players at a position:

βi ∼ Normal(µ,Σ),(5)
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where µ is the 5 × 1 vector of means and Σ is the 5 × 5 prior covariance
matrix shared across all players. We assume a priori independence of the
components of βi, so that Σ has off-diagonal elements of zero, and diagonal
elements of σ2

k (k = 0, . . . ,4). Although the components of βi are assumed
to be independent a priori, there will be posterior dependence between these
components induced by the data. The functional form of this posterior de-
pendence is given in our supplementary materials section on model imple-
mentation [Jensen, Shirley and Wyner (2009)]. Finally, we must also specify
a prior distribution for the shared player parameters (µk,σk :k = 0, . . . ,4),
which we choose to be noninformative following the recommendation of
Gelman (2006),

p(µk,σk)∝ 1, k = 0, . . . ,4.(6)

We also explored the use of alternative prior specifications, including a
proper inverse-Gamma prior distribution for σ2

k: (σ2
k)

−1 ∼Gamma(a, b), where
a and b are small values (a = b = 0.0001). We observed very little difference
in our posterior estimates using this alternative prior distribution.

For each position and BIP type, our full set of unknown parameters are
β, the N ×5 matrix containing the coefficients of each player at a particular
position (N = number of players at that position), as well as µ, the 5 × 1
vector of coefficient means, and σ2, the 5× 1 vector of coefficient variances
shared by all players at that position. For each position and BIP-type, we
separately estimate the posterior distribution of our parameters β, µ and
σ2,

p(β,µ,σ2|S,X)∝ p(S|β,X) · p(β|µ,σ2) · p(µ,σ2),(7)

where S is the collection of all outcomes Sij and X is a collection of all lo-
cation and velocity covariates Xij . We estimate the posterior distribution of
all unknown parameters at each position and BIP-type using MCMC meth-
ods. Specifically, we employ a Gibbs sampling strategy [Geman and Geman
(1984)] that builds upon standard hierarchical regression methodology
[Gelman et al. (2003)] and data augmentation for probit models
[Albert and Chib (1993)]. Additional details are provided in our supplemen-
tary materials [Jensen, Shirley and Wyner (2009)]. Our estimation proce-
dure is repeated for each of the eighteen combinations of position and BIP
type listed in Table 1, and for each of the 4 years from 2002–2005, for a
grand total of 18 × 4 = 72 fitted models. In the next section we provide a
detailed examination of our model fit for a particular position, BIP-type and
year: flyballs fielded by centerfielders in 2005.

3. Illustration of our model: flyballs to CF in 2005. Of the 38,000 flyballs
that were hit into fair territory in 2005, about 11,000 of them were caught
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Fig. 3. Plot of 5062 flyballs caught by center fielder (left), and 10,705 flyballs not caught
by CF or any other fielder (right). Together these 15,767 points comprise the set of CF-el-
igible flyballs from 2005. However, only flyballs that fall within 250 feet of the CF location
are used in our model fit, though this restriction only excludes a few flyballs located near
home plate.

by the CF. Of the 27,000 that were not caught by the CF, about 22,000 were
caught by one of the other eight fielders and about 5000 were not caught by
any fielder. The 22,000 flyballs caught by one of the other eight fielders are
not treated as failures for the CF since it is unknown if the CF would have
caught them had the other fielder not made the catch. These observations
are treated as missing data with respect to modeling the fielding ability of
the CF. The “CF-eligible” flyballs in 2005 are all flyballs that were either (1)
caught by the CF or (2) not caught by any other fielder. There were exactly
15,767 CF-eligible flyballs in 2005. Figure 3 contains plots of the CF-eligible
flyballs that were caught by the CF (left), and those that were not caught by
the CF (right). In the right plot, data are sparse in the regions where the left
fielder (LF) and right fielder (RF) play, as well as in the infield. Most of the
flyballs hit to these locations were caught by the LF, RF or an infielder, and
are therefore not included as CF-eligible flyballs. Additionally, we restrict
ourselves only to flyballs that landed within 250 feet of the CF location for
our model estimation, since traveling any larger distance to make a catch is
unrealistic.

3.1. Data and model for illustration. For each flyball, the data consist of
the (x, y)-coordinates of the flyball location, the identity of the CF playing
defense, and the velocity of the flyball, which is an ordinal variable with 3
levels, where 3 indicates the hardest-hit ball. In 2005 there were N = 138
unique CFs that played defense for at least one CF-eligible flyball. The
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number of flyballs per fielder, ni, ranges from 1 to 531, and its distribution
is skewed to the right. We denote the (x, y)-coordinate of the jth flyball hit
to the ith CF as (xij , yij). Based on the overall distribution of these flyballs,
we estimate the ideal starting position of a CF as the coordinate in the field
with the highest catch probability across all CFs. This coordinate, which
we call the CF centroid, was estimated to be (0,324), which is 324 feet into
centerfield straight from home plate.

For the jth ball hit to the ith CF, we have the following covariates for
our model fit: the distance from the flyball location to the CF centroid,

Dij =
√

(xij − 0)2 + (yij − 324)2, and the velocity of the flyball Vij which

takes on an ordinal value from 1 to 3. As mentioned above, our model
estimation only considers flyballs where Dij ≤ 250 feet. We also create an
indicator variable for whether the flyball was hit to a location in front of
the CF: Fij = I(yij < 324). Fij = 1 corresponds to flyballs where the CF
must move forward, whereas Fij = 0 corresponds to flyballs where the CF
must move backward. For the purpose of this illustration only, we consider
a simplified version of our model that does not have interactions between
these covariates. Specifically, we fit the following simplified model:

P (Sij = 1) = Φ(βi0 + βi1Dij + βi2Vij + βi3Fij)
(8)

= Φ(Xij ·βi),

where Φ(·) is the cumulative distribution function for the standard normal
distribution. In our full analysis, we fit the model with interactions from
equation (2) in Section 2.3. For this illustration only, we also rescale the
predictors Dij , Vij and Fij to have a mean of zero and an sd of 0.5, so that
the posterior estimates of β are on roughly the same scale, and to reduce
the correlation between the intercept and the slope coefficients.

3.2. Model implementation for illustration. We use the Gibbs sampling
approach outlined in our supplementary materials [Jensen, Shirley and Wyner
(2009)] to fit our simplified model (8) for CF flyballs in 2005. Figure 4 dis-
plays posterior means and 95% posterior intervals for the four elements of
the coefficient mean vector µ shared across all CFs. As expected, the coeffi-
cients for distance and velocity are negative and, not surprisingly, distance
is clearly the predictor that explains the most variation in the outcome. The
coefficient for forward is positive, which means that it is easier for a CF to
catch a flyball hit in front of him than behind him for the same distance
and velocity. The intercept is positive, and is about 0.58. The intercept can
be interpreted as the inverse probit probability [Φ(0.58) ≈ 72%] of catching
a flyball hit to the mean distance from the CF (about 90 feet) at the mean
velocity (about 2.2 on the scale 1–3).

Figure 5 displays three different estimates of β:
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Fig. 4. Posterior means and 95% intervals for the population-level slope coefficients µ.

1. no pooling: β estimates from model with no common distribution between
player coefficients,

2. complete pooling: β estimates from model with all players combined to-
gether for a single set of coefficients,

3. partial pooling: β estimates from our model described above, with sepa-
rate player coefficients that share a common distribution.

From Figure 5 it is clear there that there was substantial shrinkage for
the Distance and Forward coefficients, slightly less shrinkage for the Velocity
coefficient, and not much shrinkage for the intercept. The posterior means
for σk were 0.15, 0.28, 0.28 and 0.17 for the Intercept, Distance, Velocity
and Forward coefficients, respectively. The posterior distributions of σk did
not include any mass near zero, indicating that complete pooling is also not
a good model, since these estimates should approach zero if there is not
sufficient evidence of heterogeneity among individual players.

Figure 6 includes all N = 138 estimates of βi (i = 1, . . . ,N ) with 95%
intervals included. The estimates are displayed in decreasing order of ni

from left to right, where the player with the most BIP observations had n1 =
531 observations, and six players had just 1 observation. The players with
fewer observations had their estimates shrunk much closer to the population
means displayed in Figure 4, which are also drawn as horizontal lines in
Figure 6, and they also had larger 95% intervals, as one would expect with
fewer observations. One interesting thing to note is that a small number of
players have estimated velocity coefficients that are positive, meaning they
are relatively better at catching flyballs that are hit faster, and at least one
player has a forward coefficient that is negative, meaning he is better at
catching balls hit behind him.

To check the fit of the model graphically, we examine a number of residual
plots, as shown in Figure 7. Figure 7(a) shows the histogram of the residuals,

rij = yij −Φ(Xijβ̂i),
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Fig. 5. Three different estimates of β, corresponding to no pooling, partial pooling and
complete pooling. Only the 45 CFs with the largest sample sizes are included in these plots,
because the no-pooling estimates for many of the CFs with little data were undefined, did
not converge or were clearly unrealistic.

for the jth flyball hit to the ith player, where β̂i is the posterior mean
vector of the regression coefficients for player i. The long left tail in the
Figure 7(a) histogram consists of flyballs that should have been caught (i.e.,
had a high predicted probability of being caught) but were not caught. Bins
of residuals were constructed by ordering the residuals rij in terms of the

predicted probability of a catch Φ(Xijβ̂i) and then dividing the ordered
residuals into equal sized bins (about 150 residuals per bin). The average
of all residuals within each bin was calculated, which we call the average
binned residuals. These average binned residuals are plotted as a function
of predicted probabilities, which are the black points in Figure 7(b). A good
model would show no obvious pattern in these average binned residuals
(black dots). It appears that our model slightly overestimates the probability
of catching the ball for predicted probabilities between 0% and 20%, and
slightly underestimates the probability of catching the ball for predicted
probabilities between 30% and 60%.
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Fig. 6. Posterior means and 95% posterior intervals for coefficients for all N = 138
individual players. In each plot, the distribution of βij for each player i is represented by a
circle at the posterior mean and a vertical line for the 95% posterior interval. The players
are displayed in decreasing order of ni from left to right, with the first player having the
largest number of BIP observations (n1 = 531) and the last player having the smallest
number of BIP observations n138 = 1.

In order to provide additional context to the observed residuals, we also
constructed average binned residuals from 500 posterior predictive simula-
tions of new data. These posterior predictive average binned residuals are
shown as gray points in the background of Figure 7(b). We also constructed
95% posterior intervals for the average binned residuals based upon these
posterior predictive simulations, and these intervals are indicated by the
black lines in Figure 7(b). We see that the pattern of our observed average
binned residuals is not unusual in the context of their posterior predictive
distribution. In fact, we find that exactly 95 out of 100 of our observed av-
erage binned residuals fall within their 95% posterior predictive intervals,
which suggests a reasonable fit. Figure 7(c) provides a different view of this
same goodness-of-fit check by plotting the actual binned probabilities against
the binned probabilities predicted by the model. Just as in Figure 7(b), the
black points indicate the relationship from our actual data, whereas the gray
points come from the same 500 posterior predictive simulations. We see that
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Fig. 7. Plot (a) on the left shows the histogram of the fitted residuals, defined as the
difference between the outcome and the expected outcome as estimated from the model us-
ing posterior means. Plot (b) plots average binned residuals against predicted probabilities,
where the average binned residuals are the average of residuals that were binned after being
ordered by the predicted probabilities. Black dots are the actual average binned residuals
from our data. The gray points in the background are average binned residuals from 500
posterior predictive simulations. The black lines represent the boundaries of 95% inter-
vals for the average binned residuals from our posterior predictive simulations. The lack
of smoothness in the interval boundaries is due to randomness in our posterior predic-
tive simulations. Plot (c) is constructed the same way as plot (b), except that the y-axis
corresponds to the binned probabilities rather than binned residuals.

the actual binned probabilities lie approximately along the 45-degree line of
equality when plotted against the predicted binned probabilities.

We also examined the association between our residuals and individual
covariates: distance, velocity, and direction, as shown in Figure 8. The plots
in Figure 8 reveal no obvious patterns in the residuals with respect to the
individual covariates, except possibly a slight overestimation of the proba-
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Fig. 8. Plot (a) contains average binned residuals plotted vs. distance. Plot (b) is a
boxplot of individual residuals rij grouped by the three different levels of velocity. Plot (c)
is a boxplot of individual residuals rij grouped by the direction indicator: moving forwards
or backward.

bility of a catch for flyballs hit at a distance of 150–200 feet from the CF.
This overestimation, however, appears to be on the order of 1–2%, which
is small relative to the natural variability in predictions for flyballs hit at
shorter distances.

We examined the shrinkage of the entire set of fitted probability curves
for the whole population of CFs, shown in Figure 9. In this figure, we plot
the fitted probability curves for all CFs (with fixed velocity v = 2 and for-
ward = 1) from three different methods. Plot (a) gives the fitted probability
curves estimated with no pooling—they are the curves calculated using the
parameter estimates from the top horizontal line in Figure 5. Several of these
curves are extreme in shape, with the most variable curves coming from play-
ers with little observed data. Plot (b) gives the curves based on parameter
estimates using the probit model with our hierarchical extension presented
in Section 2.5—the estimates from the “partial-pooling” middle line in Fig-
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Fig. 9. The fitted probability curves for each 2005 CF as a function of distance for flyballs
hit at fixed velocity v = 2 in the forward direction. Plot (a) has curves estimated with no
pooling. Plot (b) has the curves estimated by partial pooling via our hierarchical model
(using posterior means for individual players). Plot (c) is the population mean curve,
estimated with complete pooling.

ure 5. We see the stabilizing shrinkage of the partial pooling curves toward
the aggregate model estimated using all data across players, which is drawn
in plot (c) of Figure 9. It should be noted that the partial pooling curves
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are estimated using posterior means from the hierarchical model. We also
explored the use of a logit model for this data, and found the model fit was
similar to the probit model, which we preferred because of its computational
convenience.

In addition to these overall evaluations, we also performed a range of
posterior predictive checks for the fielding abilities of individual CFs. It is
of interest to see if the model is accurately describing the heterogeneity
between CFs, so we examined the difference in the percentage of flyballs
caught between the best CF versus the worst CF. We simulated 500 posterior
predictive datasets from two different models: (a) our full hierarchical model
with partial pooling and (b) the complete pooling model where a single
set of coefficients is fit to the data pooled across all CFs. For each of our
posterior predictive datasets, we calculated the difference in the percentage
of flyballs caught between the best and worst CF among the 15 CFs with
the most opportunities. Figure 10 shows the density of the difference in the
percentage of flyballs caught between the best and worst CF for the partial
pooling model (solid density line) and the complete pooling model (dashed

Fig. 10. The posterior predictive density of the difference in the percentage of flyballs
caught between the best CF versus the worst CF for two models. The solid-lined density
represents the partial pooling model and the dotted-lined density represents the complete
pooling model. These densities were estimated using 500 datasets simulated from posterior
predictive distribution under these two models. The vertical line represents the difference
between best and worst CF from our observed data.
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density line). The difference between best and worst CF from our observed
data (15.1% = 74.1% for Andruw Jones − 59.0% for Preston Wilson) is
shown as a vertical line. We see that the actual difference from our observed
data is much more likely under the partial pooling model than the complete
pooling model. Not surprisingly, the complete pooling model underestimates
the heterogeneity among players. Under partial pooling, however, additional
variability is incorporated via the hierarchical model, so that the coefficients
for each player are different, and greater differences in ability are allowed.

One additional concern about our model is the potential effect of outliers
on the estimation of fitted probability curves. We explored the effect of a spe-
cific type of outlier: plays that were scored as fielding errors. Fielding errors
are failures on BIPs that should have been fielded successfully, as judged by
the official scorer for the game. Although errors contain defensive informa-
tion and we prefer their inclusion in our model, the influence of these errors
could be substantial since they are, by definition, unexpected results relative
to the fielders’ ability. We evaluated this influence on our inference for CFs
by re-estimating our fitted probability models on a dataset with all fielding
errors removed. These re-estimated probability curves from our Bayesian
hierarchical model were essentially identical to the curves estimated with
the errors included in our dataset. However, the probability curves esti-
mated without any pooling of information were much more sensitive to the
inclusion/exclusion of errors. The sharing of information between players
through our hierarchical model seems to contribute additional robustness
toward outlying values (in the form of errors).

4. Converting model estimates to runs saved or cost. In this section we
use the fitted player-specific probability models from (2) and (4) for each
BIP type and season to estimate the number of runs that each fielder would
save or cost his team over a full season’s worth of BIPs, compared to the
average fielder at his position for that year.

4.1. Comparison to aggregate curve at each position. Our player-specific
coefficients βi can be used to calculate a fitted probability curve for each
individual player as a function of location and velocity. For flyballs and liners,
the individual fitted probability curve is denoted pi(x, y, v), the estimated
probability of catching a flyball/liner hit to location (x, y) at velocity v.
For grounders, the individual fitted probability curve is denoted pi(θ, v), the
probability of successfully fielding a grounder hit at angle θ at velocity v.
Our Gibbs sampling implementation gives us the full posterior distribution
of our player-specific coefficients βi, which we can use to calculate the full
posterior distribution of our fitted probability curves pi(x, y, v) or pi(θ, v).
Alternatively, we can calculate the posterior means β̂i for each βi vector,
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and use β̂i to fit a single probability curve p̂i(x, y, v) or p̂i(θ, v) for each
player and BIP-type. For now, we focus on these single fitted probability
curves, p̂i(x, y, v) or p̂i(θ, v), for each player. In Section 4.2 below, we will
return to an approach based on the full posterior distribution of each βi.

With these posterior mean fitted curves p̂i(x, y, v) or p̂i(θ, v), we can quan-
tify the difference between players by comparing their individual probabil-
ities of making an out relative to an average player at that position. The
model for the average player can be calculated in several different ways. A
single probit regression model can be fit to the observed data aggregated
across all players at that position to calculate the maximum likelihood esti-
mates β̂+, or we can use the posterior mean of the population parameters

µ̂. These population parameters β̂+ can be used to calculate a fitted curve
p̂+(x, y, v) or p̂+(θ, v) for the average player (for flyballs/liners or grounders,
respectively). Figure 11 illustrates the comparison on grounder curves be-
tween the average model for the SS position and two individual fielders.

For each possible angle θ and velocity v, we can calculate the difference
[p̂i(θ, v) − p̂+(θ, v)] between fielder i’s probability of success and the aver-
age probability of success, which is the difference in height between the
individual’s curve and the average curve, given in Figure 11. A positive dif-
ference at a particular angle and velocity means that the individual player
is making a higher proportion of successful plays than the average fielder
on balls hit to that angle at that velocity. A negative difference means that
the individual player is making a lower proportion of successful plays than

Fig. 11. Comparison of the grounder curves of two individual SSs p̂i(θ, v) to the average
SS curve p̂+(θ, v) for velocity fixed at a moderate value of v = 2.
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Fig. 12. Comparison of CF curve p̂i(x, y, v) for Jeremy Reed with average CF curve
p̂+(x, y, v) for flyballs with velocity v = 2 in 2005. Plot (a) shows the curves p̂i(x, y, v) vs.
p̂+(x, y, v) as a function of distance moving forward from the CF location. Plot (b) shows
the curves p̂i(x, y, v) vs. p̂+(x, y, v) as a function of distance moving backward from the CF
location. Plot (c) shows a 2-dimensional contour plot of [p̂i(x, y, v) − p̂+(x, y, v)]. Reed’s
probability of catching a ball is roughly the same as the average player at short distances,
but is about 8% larger at a distance of about 100 feet. Also, the difference in probability
for Reed vs. the average CF is slightly larger for flyballs hit in the backward direction than
for those hit in the forward direction.

the average fielder on balls hit to that angle at that velocity. For our fly-
balls/liners models, the calculation is similar, except that we need to cal-
culate these differences for all points around the fielder location in two di-
mensions. Figure 12 illustrates the comparison of probability curves between
individual players and the average curve for the CF position for flyballs. For
each possible location (x, y) and velocity v, we can calculate the difference
[p̂i(x, y, v)− p̂+(x, y, v)] between fielder i’s probability of success and the av-
erage probability of success, which is the difference between the two surfaces
shown in Figure 12.
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4.2. Weighted aggregation of individual differences. The fielding curves
p̂i(x, y, v) and p̂i(θ, v) for individual players give us a graphical evaluation
of their relative fielding quality. For example, it is clear from Figure 11
that Adam Everett has above average range for a shortstop, whereas Derek
Jeter has below average range for a shortstop. However, we are also inter-
ested in an overall numerical evaluation of each fielder which we will call
“SAFE” for “Spatial Aggregate Fielding Evaluation.” For flyballs or liners,
one candidate value for each fielder i could be to aggregate the individual
differences [p̂i(x, y, v)− p̂+(x, y, v)] over all coordinates (x, y) and velocities
v. For grounders, the corresponding value would be the aggregation of indi-
vidual differences [p̂i(θ, v)− p̂+(θ, v)] over all angles θ and velocities v. These
aggregations could be carried out by numerical integration over a fine grid
of values. However, these simple integrations do not take into account the
fact that some coordinates (x, y) or angles θ have a higher BIP frequency
during the course of a season. As we saw in Figure 1, the spatial distribution
of BIPs over the playing field is extremely nonuniform. Let f̂(x, y, v) be the
kernel density estimate of the frequency with which flyballs/liners are hit
to coordinate (x, y), which is estimated separately for each velocity v. Let
f̂(θ, v) be the kernel density estimate of the frequency with which grounders
are hit to angle θ, which is estimated separately for each velocity v. Each
fielder’s overall value at a given coordinate or angle in the field should be
weighted by the number of BIPs hit to that location, so that differences in
ability between players in locations where BIPs are rare have little impact,
and differences in ability between players in locations where BIPs are com-
mon have greater impact. Therefore, a more principled overall fielding value
would be an integration weighted by these BIP frequencies,

SAFEfly
i =

∫

f̂(x, y, v) · [p̂i(x, y, v)− p̂+(x, y, v)]dxdy dv,

SAFEgrd
i =

∫

f̂(θ, v) · [p̂i(θ, v)− p̂+(θ, v)]dθ dv.

As an illustration, plot (b) of Figure 13 shows the density estimate of the
angle of grounders (averaged over all velocities). However, these values are
still unsatisfactory because we are not addressing the fact that each coordi-
nate or angle in the field also has a different consequence in terms of the run
value of an unsuccessful play. An unsuccessful play on a pop-up to shallow
left field will not result in as many runs being scored, on average, as an
unsuccessful play on a fly ball to deep right field. Likewise, a grounder that
goes past the first baseman down the line will result in more runs scored,
on average, than a grounder that rolls past the pitcher into center field. For
flyballs and liners, we estimate the run consequence of an unsuccessful play
at each (x, y)-location in the field by first estimating two-dimensional kernel
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Fig. 13. Components of our SAFE aggregation, using grounders to the SS position as
an example. Piot (a) gives the individual grounder curve p̂i(θ, v) for Derek Jeter along
with the the average grounder curve p̂+(θ, v) across all SSs for velocity fixed at a moderate
value of v = 2. Plot (b) shows the density estimate of the BIP frequency for all grounders
as a function of angle (averaged over all velocities). Plot (c) gives the run consequence
for grounders with velocity v = 2 as a function of angle. Note the inflated consequence of
grounders hit along the first and third base lines. Plot (d) gives the shared responsibility
of the SS on grounders as a function of the angle, with a fixed velocity v = 2.

densities separately for the three different hitting events: singles, doubles
and triples. We can do this using our data, in which the result of each BIP
that was not fielded successfully was recorded in terms of the base that
the batter reached on that BIP, which is either first, second or third base.
For each (x, y)-coordinate in the field and velocity v, we use these kernel
densities to calculate the relative frequency of each hitting event to each
(x, y)-coordinate in the field with velocity v. We label these relative fre-
quencies (r̂1(x, y, v), r̂2(x, y, v), r̂3(x, y, v)) for singles, doubles, and triples,
respectively. We then calculate the run consequence for each coordinate and
velocity as a function of these relative frequencies:

r̂tot(x, y, v) = 0.5 · r̂1(x, y, v) + 0.8 · r̂2(x, y, v) + 1.1 · r̂3(x, y, v).(9)
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The coefficients in this function come from the classical “linear weights”
[Thorn and Palmer (1993)] that give the run consequence for each type of
hit. These linear weights are calculated by tabulating over many seasons the
average number of runs scored whenever each type of batting event occurs.
From the original analysis by Palmer [Thorn and Palmer (1993)], 0.5 runs
scored on average when a single was hit, 0.8 runs scored on average when
a double was hit and 1.1 runs scored on average when a triple was hit.
Weighting by the relative frequencies of these three events in equation (9)
gives the average number of runs scored for a BIP that is not caught at
every (x, y)-coordinate and velocity v. An analogous procedure produces a
run consequence r̂tot(θ, v) for grounders at each angle θ and velocity v. As
an example, plot (c) of Figure 13 gives the run consequence for grounders
hit as a function of angle at a velocity of v = 2. Most grounders hit toward
the middle of the field that are not fielded successfully result in singles,
which have an average run value of 0.5. Only down the first and third base
lines do grounders sometimes result in doubles or triples, which inflates
their average run consequence. We incorporate the run consequence for each
coordinate/angle as additional weights in our numerical integration,

SAFEfly
i =

∫

f̂(x, y, v) · r̂tot(x, y, v) · [p̂i(x, y, v)− p̂+(x, y, v)]dxdy dv,

SAFEgrd
i =

∫

f̂(θ, v) · r̂tot (θ, v) · [p̂i(θ, v)− p̂+(θ, v)]dθ dv.

In addition to run consequence, we must take into account that neighbor-
ing fielders should share the credit and blame for successful and unsuccessful
plays. As an example, the difference between the abilities of two center field-
ers is irrelevant at a location on the field where the right fielder will always
make the play. We estimate a “shared responsibility” vector for each coor-
dinate and velocity on the field, labeled as ŝ(x, y, v) for flyballs/liners. At
each coordinate (x, y) and velocity v, we calculate the relative frequency of
successful plays made by fielders at each position, and these relative fre-
quencies are collected in the vector ŝ(x, y, v). The vector ŝ(x, y, v) has seven
elements, which is the number of valid positions for flys/liners in Table 1.
Similarly, we estimate a shared responsibility vector for each angle and ve-
locity on the field, labeled as ŝ(θ, v) for grounders. At each angle θ and
velocity v, we calculate the relative frequency of successful plays made by
fielders at each position, and these relative frequencies are collected in the
vector ŝ(θ, v). The vector ŝ(θ, v) has four elements, which is the number
of valid positions for grounders in Table 1. Plot (d) of Figure 13 gives an
example of the shared responsibility of the SS position as a function of the
angle, for grounders with velocity v = 2. The shared responsibility at each
grid point for a particular player i with position posi is incorporated into
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their SAFE value,

SAFEfly
i =

∫

f̂(x, y, v) · r̂tot(x, y, v) · ŝpos i
(x, y, v)

(10)
· [p̂i(x, y, v)− p̂+(x, y, v)]dxdy dv,

SAFEgrd
i =

∫

f̂(θ, v) · r̂tot(θ, v) · ŝpos i
(θ, v) · [p̂i(θ, v)− p̂+(θ, v)]dθ dv.(11)

Figure 13 gives an illustration of the different components of our SAFE
integration, using SS grounders as an example. The overall SAFEi value for
a particular player i is the sum of the SAFE values for each BIP type for
that player’s position:

SAFEi = SAFEfly
i + SAFEliner

i for outfielders,(12)

SAFEi = SAFEfly
i + SAFEliner

i + SAFEgrd
i for infielders.(13)

However, as noted in Section 4.1, there is no need to focus SAFE integra-
tion only on a single fitted curve p̂+(x, y, v) or p̂+(θ, v) when we have the
full posterior distribution of βi for each player. Indeed, a more principled
approach would be to calculate the integrals (10)–(11) separately for each
sampled value of βi from our Gibbs sampling implementation, which would
give us the full posterior distribution of SAFE values for each player. In
Section 5 below, we compare different individual players based upon the
posterior distributions of their SAFE values.

5. SAFE results for individual fielders. Using the procedure described
in Section 4, we calculated the full posterior distribution of SAFEi for each
fielder separately for each of the 2002–2005 seasons. We will compare these
posterior distributions by examining both the posterior mean and the 95%
posterior interval of SAFEi for different players. The full set of year-by-year
posterior means of SAFEi for each player are available for download at our
project website:

http://stat.wharton.upenn.edu/∼stjensen/research/safe.html.

Several fielders can have SAFE values at multiple positions in a particular
year, or may have no SAFE values at all if their play was limited due to
injury or retirement. In the remainder of this section we focus our attention
on the best and worst individual player-years of fielding performance at each
position. For each position, we focus only on players who played regularly
by restricting our attention to player-years where the individual player faced
more than 500 balls-in-play at that position. The following results are not
sensitive to other reasonable choices for this BIP threshold.

In Table 2 we give the ten best and worst player-years at each outfield
position in terms of the posterior mean of the SAFEi values. In addition to

http://stat.wharton.upenn.edu/~stjensen/research/safe.html


BAYESIAN MODELING OF FIELDING IN BASEBALL 25

the posterior mean of SAFEi, we also give the 95% posterior interval. Since
each year is evaluated separately for each player, particular players can ap-
pear multiple times in Table 2. Clearly, the best fielders have positive SAFE
values, indicating a positive run contribution relative to the average fielder
over the course of an entire season. The worst fielders have a corresponding
negative run contribution relative to the average fielder over the course of
an entire season.

The magnitude of these run contributions in Table 2 are generally lower
than the values obtained by previous fielding methods, such as UZR. One
reason for these smaller magnitudes is the shrinkage toward the population
mean imposed by our hierarchical model (Section 2.5). We also see in Table 2
that the magnitudes of the CF position are generally higher than the LF
or RF positions, due to the increased number of BIPs hit toward the CF
position. Another general observation from the results is the heterogeneity
not only in the posterior means of SAFEi but also in the posterior variance
of SAFEi, as indicated by the width of the 95% posterior intervals. Indeed,
even among these best/worst players (in terms of the posterior mean), we
see some posterior intervals that contain zero, whereas other fielders have
SAFEi intervals that are entirely above or below average.

We also examine the ten best and worst infielders at each position, where
the values for corner infielders (1B and 3B) are given in Table 3 and the
values for middle infielders (2B and SS) are given in Table 4. We again see a
substantial difference in the magnitude of the top runs saved/cost by fielders
between the different infield positions. Shortstops and second baseman have
generally larger SAFE values because of the much greater number of BIPs
hit to their position compared to first and third base. This increased BIP
frequency to the middle infield positions seems to more than compensate for
the lower run consequence of missed catches up the middle, which are almost
always singles, compared to missed catches down the first or third base
line, which can often be doubles or even triples. There are also substantial
differences in the posterior variance of the SAFE values, as indicated by
the width of the 95% posterior intervals. As with outfielders, only a subset
of the best/worst infielders (in terms of the posterior mean) have posterior
intervals that exclude zero, suggesting that they are significantly different
than average.

One example of a player that seems to be significantly worse than average
is Derek Jeter, who has some of the worst SAFE values among all shortstops.
The fielding performance of Derek Jeter has always been controversial: he
has been awarded several gold gloves despite being considered to have poor
range by most other fielding methods. Our extremely poor SAFE value for
Derek Jeter is especially interesting since our results also suggest that Alex
Rodriguez has some of the best SAFE values among shortstops, especially
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Table 2

Outfielders in 2002–2005 with best and worst individual years of SAFE values. Posterior means and 95% posterior intervals of the
SAFE values are given for each of these player-years. SAFE values can be interpreted as the runs saved or cost by that fielder’s

performance across an entire season

Ten best left fielders Ten best center fielders Ten best right fielders

Name and year Post. 95% post. Name and year Post. 95% post. Name and year Post. 95% post.
mean interval mean interval mean interval

C. Crisp, 05 11.2 (4.1, 17.8) A. Jones, 05 11.8 (2.2, 20.7) J. Guillen, 05 6.5 (1.8, 11.8)
C. Crawford, 03 8.5 (1.1, 15.4) J. Edmonds, 05 10.1 (−0.5, 20.5) R. Hidalgo, 02 6.4 (−2.4, 14.1)
S. Stewart, 02 8.1 (0.2, 16.5) D. Erstad, 03 10.0 (−1.2, 20.7) J. D. Drew, 04 6.1 (−0.5, 13.1)
C. Crawford, 02 7.7 (−1.3, 18.6) C. Patterson, 04 9.8 (1.9, 17.9) B. Abreu, 02 5.6 (−1.6, 13.2)
C. Crawford, 04 7.6 (1.7, 13.2) D. Roberts, 03 9.6 (1.2, 18.9) J. Cruz, 03 5.5 (−1.1, 11.2)
B. Wilkerson, 03 7.5 (−3.2, 16.6) A. Rowand, 02 9.2 (−0.6, 20.3) D. Mohr, 02 5.5 (−3.2, 15.5)
P. Burrell, 02 6.8 (−0.2, 14.8) A. Jones, 03 9.1 (3.2, 17.1) S. Sosa, 04 5.1 (−1.6, 14.0)
P. Burrell, 03 6.6 (−0.9, 14.0) M. Cameron, 03 8.9 (0.3, 17.1) A. Kearns, 02 4.7 (−6.8, 16.1)
S. Podsednik, 05 6.3 (0.4, 14.2) A. Jones, 04 8.5 (−1.2, 18.3) J. Guillen, 03 4.6 (−1.6, 11.7)
L. Gonzalez, 02 5.9 (−3.4, 13.5) A. Jones, 02 7.9 (0.6, 15.8) X. Nady, 03 4.6 (−4.5, 13.4)

Ten worst left fielders Ten worst center fielders Ten worst right fielders

Name and year Mean 95% interval Name and year Mean 95% interval Name and year Mean 95% interval

M. Cabrera, 05 −10.1 (−18.0, −0.4) B. Williams, 05 −14.2 (−23.4, −5.3) G. Sheffield, 05 −14.7 (−21.6, −9.5)
M. Ramirez, 05 −9.7 (−18.4, −0.8) B. Williams, 04 −13.2 (−24.5, −3.1) V. Diaz, 05 −6.7 (−14.9, 2.1)
B. Higginson, 02 −7.6 (−14.0, −0.6) K. Griffey Jr., 04 −12.5 (−24.4, −1.3) B. Abreu, 05 −6.7 (−12.3, 0.0)
L. Bigbie, 03 −6.9 (−15.1, 1.5) D. Roberts, 05 −9.8 (−21.0, 2.2) J. Dye, 02 −5.7 (−14.9, 2.4)
R. Ibanez, 03 −6.4 (−12.8, 0.9) C. Beltran, 05 −7.5 (−16.9, 2.8) G. Sheffield, 04 −5.6 (−11.2, 0.0)
A. Dunn, 05 −6.1 (−11.2, 1.1) J. Damon, 04 −7.3 (−14.4, −0.1) B. Trammell, 02 −5.5 (−15.7, 7.6)
H. Matsui, 05 −5.9 (−12.4, −0.2) C. Sullivan, 05 −7.2 (−20.8, 6.5) M. Ordonez, 02 −5.4 (−13.0, 1.0)
M. Ramirez, 04 −5.6 (−14.8, 0.1) B. Williams, 03 −7.0 (−15.5, 1.1) J. Dye, 05 −4.9 (−10.1, 1.0)
H. Matsui, 04 −5.5 (−11.5, −2.0) J. Hammonds, 02 −6.9 (−15.1, 1.9) A. Huff, 03 −4.6 (−14.2, 6.6)
C. Floyd, 04 −4.8 (−11.1, 2.4) G. Anderson, 04 −6.3 (−14.5, 3.4) M. Cabrera, 04 −4.0 (−10.3, 2.6)
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his 2003 season with the Texas Rangers. Our SAFE results seem to con-
firm the popular sabrmetric opinion that the New York Yankees have one
of baseball’s best defensive shortstops playing out of position in deference
to one of the game’s worst defensive shortstops. To complement these anec-
dotal evaluations of our results, we also compare our results to an external
approach, UZR, in Section 6.

6. Comparison to other approaches. As mentioned in Section 1, a pop-
ular fielding measure is the Ultimate Zone Rating [Lichtman (2003)] which
also evaluates fielders on the scale of run saved/cost. In general, the mag-
nitudes of our SAFE values are generally less than UZR because of the
shrinkage imposed by our hierarchical model. In fairness, it should be noted
that SAFE measures the expected number of runs saves/cost, while UZR

Table 3

Corner Infielders in 2002–2005 with best and worst individual years of SAFE values.
Posterior means and 95% posterior intervals of the SAFE values are given for each of

these player-years. SAFE values can be interpreted as the runs saved or
cost by that fielder’s performance across an entire season

Ten best 1B player-years Ten best 3B player-years

Name and year Mean 95% interval Name and year Mean 95% interval

Ken Harvey, 2003 5.0 (1.5, 8.0) Hank Blalock, 2003 10.0 (4.2, 16.5)
Doug Mientkiewicz, 2003 3.4 (−1.2, 6.5) Sean Burroughs, 2004 8.9 (3.4, 14.2)
Ben Broussard, 2003 3.2 (1.6, 4.9) David Bell, 2002 7.4 (1.7, 13.3)
Eric Karros, 2002 2.6 (−3.2, 7.5) Scott Rolen, 2004 7.4 (1.9, 12.1)
Darin Erstad, 2005 2.2 (−0.8, 4.9) Damian Rolls, 2003 7.2 (0.1, 13.6)
Todd Helton, 2002 2.2 (−3.6, 7.2) Craig Counsell, 2002 6.9 (0.9 , 12.7)
Mike Sweeney, 2002 2.0 (−2.6, 6.1) Placido Polanco, 2002 5.6 (0.3, 12.1)
Mark Teixeira, 2005 1.7 (−1.0, 4.9) David Bell, 2005 5.6 (−0.2, 9.3)
Scott Spiezio, 2003 1.4 (−1.2, 4.6) Bill Mueller, 2002 5.4 (−3.4, 12.6)
Nick Johnson, 2005 1.2 (−2.0, 4.1) Adrian Beltre, 2002 5.3 (−0.4, 11.2)

Ten worst 1B player-years Ten worst 3B player-years

Name and year Mean 95% interval Name and year Mean 95% interval

Fred McGriff, 2002 −6.4 (−9.4, −2.8) Travis Fryman, 2002 −9.4 (−15.2, −4.4)
Mo Vaughn, 2002 −5.1 (−9.7, −0.3) Fernando Tatis, 2002 −8.1 (−14.2, −2.0)
J. T. Snow, 2002 −4.8 (−10.1, −0.3) Michael Cuddyer, 2005 −7.3 (−11.4, −2.9)
Ryan Klesko, 2003 −4.4 (−8.7, −0.3) Eric Munson, 2003 −7.1 (−12.4, −2.8)
Carlos Delgado, 2005 −4.2 (−7.8, −0.8) Mike Lowell, 2003 −6.8 (−13.6, −1.6)
Steve Cox, 2002 −4.0 (−8.3, −0.3) Wes Helms, 2004 −6.2 (−13.8, 3.4)
Carlos Delgado, 2002 −4.0 (−8.2, 0.1) Tony Batista, 2002 −6.1 (−11.1, −0.9)
Matt Stairs, 2005 −3.9 (−8.3, −0.3) Todd Zeile, 2002 −5.8 (−11.9, −0.7)
Jason Giambi, 2003 −3.8 (−7.4, −0.2) Chris Truby, 2002 −5.2 (−11.7, 1.0)
Jeff Conine, 2003 −3.2 (−6.1, 0.3) Mike Lowell, 2002 −4.8 (−10.1, 0.8)
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Table 4

Middle Infielders in 2002–2005 with best and worst individual years of SAFE values.
Posterior means and 95% posterior intervals of the SAFE values are given for each of

these player-years. SAFE values can be interpreted as the runs saved or
cost by that fielder’s performance across an entire season

Ten best 2B player-years Ten best SS player-years

Name and year Mean 95% interval Name and year Mean 95% interval

Junior Spivey, 2005 14.5 (4.7, 27.1) Alex Rodriguez, 2003 13.5 (3.5, 24.4)
Chase Utley, 2005 10.8 (3.1, 17.7) Adam Everett, 2005 11.5 (1.8, 21.7)
Craig Counsell, 2005 10.8 (5.3, 18.0) Clint Barmes, 2005 10.8 (−0.6, 21.5)
Orlando Hudson, 2004 10.8 (4.3, 16.4) Rafael Furcal, 2005 8.8 (−0.5, 18.6)
D’Angelo Jimenez, 2002 10.3 (−4.9, 21.6) Adam Everett, 2003 8.7 (−0.2, 17.7)
Brandon Phillips, 2003 9.2 (−0.7, 19.2) David Eckstein, 2003 8.7 (−4.1, 20.3)
Placido Polanco, 2005 9.0 (2.9, 12.8) Bill Hall, 2005 8.5 (−4.5, 23.7)
Orlando Hudson, 2005 9.0 (2.3, 14.8) Jason Bartlett, 2005 8.3 (−2.8, 20.4)
Mark Ellis, 2003 8.9 (−0.2, 18.5) Jimmy Rollins, 2005 7.8 (−2.6, 16.9)
Brian Roberts, 2003 8.3 (−0.2, 17.3) Alex Rodriguez, 2002 7.6 (−2.1, 16.5)

Ten worst 2B player-years Ten worst SS player-years

Name and year Mean 95% interval Name and year Mean 95% interval

Bret Boone, 2005 −15.4 (−22.4, −8.1) Derek Jeter, 2005 −18.5 (−29.1, −9.2)
Luis Rivas, 2002 −13.8 (−20.9, −6.4) Michael Young, 2004 −15.6 (−23.6, −7.2)
Enrique Wilson, 2004 −12.3 (−18.9, −6.2) Derek Jeter, 2003 −15.6 (−24.8, −6.4)
Roberto Alomar, 2003 −12.1 (−19.3, −4.6) Jhonny Peralta, 2005 −11.4 (−18.6, −3.5)
Miguel Cairo, 2004 −10.9 (−17.9, −3.1) Michael Young, 2005 −11.4 (−20.1, −1.9)
Ricky Gutierrez, 2002 −9.1 (−18.8, 2.3) Derek Jeter, 2004 −10.3 (−20.0, −2.1)
Luis Rivas, 2003 −9.0 (−16.0, −0.9) Deivi Cruz, 2003 −10.1 (−17.7, 1.2)
Bret Boone, 2002 −9.0 (−18.2, −1.5) Angel Berroa, 2004 −10.0 (−16.3, −2.4)
Jose Vidro, 2004 −8.8 (−17.7, −2.5) Derek Jeter, 2002 −10.0 (−18.2, −3.6)
Luis Castillo, 2002 −8.7 (−17.1, −0.4) Rich Aurilia, 2002 −8.7 (−16.6, 2.4)

tabulates the actual observations. However, we can still examine the corre-
lation between the SAFE and UZR across players, which is done in Table 5
for the 423 players for which we have both SAFE and UZR values available.
Note that only the 2002–2004 seasons are given because UZR values were not
available for 2005. We see substantial variation between positions in terms
of the correlation between SAFE and UZR. CF is the position with a high
correlation, whereas 3B seems to have generally low correlation. There is
also substantial variation within each position between each year. The con-
sistency across years (or lack thereof) can be used as additional diagnostic
measure for comparing our method to UZR. The problem with our com-
parison of methods is the lack of a gold-standard “truth” that can be used
for external validation. However, one potential validation measure would be
to examine the consistency of a player’s SAFE value over time compared
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to UZR. Under the assumption that player ability is constant over time,
the high consistency of a player’s value over time would be indicative that
our method is capturing true signal within the noise of player performance.
We can measure consistency over time of SAFE with the correlation of our
SAFE measures between years, as well the corresponding correlations be-
tween years of the UZR values. In Table 6 we give the correlation between
the 2002 and 2003 seasons for both SAFE and UZR values, as well as the
difference between these correlations. We see that overall our SAFE method
does well compared to UZR, with a slightly higher overall correlation. How-
ever, there is substantial differences in performance between the different
positions. The SAFE method does very well in the outfield positions, es-
pecially in CF where the correlation for our SAFE values is almost twice
as high as the UZR values. However, SAFE does not perform as well in
the infield positions, especially the SS position, where SAFE has a much
lower correlation compared to UZR. One exception to the poor performance
among infielders is the 3B position, where our SAFE values have a sub-
stantially higher correlation than UZR. We also examined the correlation
between more distant years (2002 and 2004) and, as expected, the correla-
tions are not as high for either the SAFE or UZR measures. The general
conclusion from these comparisons is that our SAFE method is competitive
with the popular previous method, UZR, and out-performs UZR for several
positions, especially in the outfield.

An alternate way to handle the longitudinal aspect of the data would be
to model the evolution of a player’s fielding ability from year to year using
an additional parameter or set of parameters. This type of approach has
been used previously by Glickman and Stern (1998) to model longitudinal
data in professional football, and could potentially allow for the modeling
of a trend in the fielding ability of a baseball player across years.

Table 5

Correlation between SAFE and UZR for each fielding
position

POS 2002 2003 2004

1B 0.401 0.608 0.100
2B 0.284 0.238 0.422
3B 0.257 0.180 0.351
CF 0.609 0.546 0.635
LF 0.513 0.608 0.253
RF 0.410 0.469 0.392
SS 0.460 0.177 0.146

Total 0.397 0.440 0.317
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Table 6

Between year correlation for SAFE and UZR for each fielding
position

POS SAFE UZR DIFF

1B 0.287 0.390 −0.103
2B 0.051 0.111 −0.060
3B 0.503 0.376 0.127
SS −0.030 0.247 −0.277
CF 0.525 0.285 0.240
LF 0.594 0.548 0.045
RF 0.444 0.468 −0.023

Total 0.372 0.369 0.003

7. Discussion. We have presented a hierarchical Bayesian probit model
for estimation of spatial probability curves for individual fielders as a func-
tion of location and velocity data. Our analysis is based on data with much
higher resolution of BIP location than the large zones of methods such as
UZR. Our approach is model-based, which means that each player’s perfor-
mance is represented by a probability function with estimated parameters.
One benefit of this model-based approach is that the probability of making
an out is a smooth function of location in the field, which is not true for
other methods. This smoothing makes the resulting estimates of our anal-
ysis less variable, since we are essentially sharing information between all
points near to a fielder. Our probit models are nested within a Bayesian
hierarchical structure that allows for sharing of information between fielders
at a position. We have evaluated the shrinkage of curves imposed by our hi-
erarchical model, which is intended to give improved signal for players with
low sample sizes as well as reduced sensitivity to outliers, as discussed in
Section 3.

We aggregate the differences between individual player curves to produce
an overall measure of fielder quality which we call SAFE: spatial aggregate
fielding evaluation. Our player rankings are reasonable, and when compared
to previous fielding methods, namely, UZR, our SAFE values have superior
consistency across years in several positions. SAFE does perform inconsis-
tently across seasons for several other positions, especially in the infield,
which merits further investigation and modeling effort. However, we note
that by looking at consistency between years as a validation measure, we
are assuming that player ability is actually constant over time, which may
not be the case for many players. It is also worth noting that our current
analysis does not take into account differences in the geography of the play-
ing field for different parks, which could impact our outfielder evaluations.
Our SAFE numerical integrations are made over a grid of points that assume
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the maximal park dimensions, but individual park dimensions can be quite

different, with the most dramatic example being the left-field in Fenway

Park. Whether or not these differences in park dimensions have a noticeable

effect on our fielding evaluation will be the subject of future research.
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SUPPLEMENTARY MATERIAL

Gibbs sampling implementation (DOI: 10.1214/08-AOAS228SUPP; .pdf).

We provide details of our Markov chain Monte Carlo implementation, which

is based on the Gibbs sampling [Geman and Geman (1984)] and the data

augmentation approach of Albert and Chib (1993).
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