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ABSTRACT

Current image quality estimators (QEs) compute a single score
to estimate the perceived quality of a single input image. When com-
paring image quality between two images with such a QE, one only
knows which image has a higher score; there is no knowledge about
the uncertainty of these scores or what fraction of viewers might
actually prefer the image with the lower score. In this paper, we
present a Probabilistic Pairwise Preference Predictor (P4) that esti-
mates the probability that one image will be preferred by a random
viewer relative to a second image. We train a multilevel Bayesian
logistic regression model using results from a large-scale subjective
test and present the degree to which various factors influence sub-
jective quality. We demonstrate our model provides well-calibrated
estimates of pairwise image preferences using a validation set com-
prising pairs with 60 reference images outside the training set.

1. INTRODUCTION
Systems for image capture, compression, transmission, and dis-
play can all benefit from a visual quality estimator (QE) that can
accurately mimic subjective, human quality judgments for a wide
range of input content and processing types. Unfortunately, ob-
taining accurate subjective quality estimates is expensive and time-
consuming; perhaps even more problematic, human responses are
inherently probabilistic. Inter-viewer variability may occur due to a
viewer’s individual ability to discriminate, a viewer’s preference of
one distortion type over another, or a preference for a distortion in
one spatial region over another. Even the same viewer may produce
different answers at different times, due to different viewing condi-
tions, fatigue, lack of focus, or distractions. For example, greater
inter-viewer variability is expected if the images being rated have
similar quality or if the task is complex such as a preference among
images with different content.

The question we seek to answer in this work is the following:
can a QE accurately mimic human responses in a probabilistic man-
ner? More precisely, we wish to find a pairwise-preference predic-
tor which can provide an estimate of the form “a random viewer
will prefer the image on the left with a probability of, e.g., 40%”.
Despite the growing recognition of viewer variability [1, 2], to our
knowledge, no existing objective QE produces a probabilistic esti-
mate.

We choose to model relative quality, e.g., “the image on the
LEFT is better than that on the RIGHT”, instead of absolute qual-
ity, e.g., “this image has a quality score of 4.5”, for a variety of rea-
sons. Firstly, relative QEs have many applications, such as product
and algorithm benchmarking and selection [3]. Secondly, a relative
QE allows for a probabilistic interpretation, which provides more
context than an absolute QE (knowing that two images have abso-
lute QE scores of 2.3 vs. 3.6, for example, is less informative, on
its own, than knowing that 75% of viewers prefer one image to the
other, which is interpretable even to a layperson). Lastly, subjective
testing methods for absolute ratings require training (e.g., for view-
ers to recognize the meaning of the score and the correct usage of the

dynamic range), and are usually very tightly prescribed [4]. This im-
plies that data collection is limited, and the results thus obtained may
not apply to real-life viewers and viewing conditions. On the other
hand, when the question posed is relative, lightly trained viewers can
complete the task competently [5]. Thus relative QEs are more suit-
able for large scale subjective tests and the probabilistic QE model
we propose here.

Naively, one can use an existing QE to decide one image has
a better (or worse) quality than another if their objective QE scores
differ by more than a constant threshold ∆o [6], and deem them to
have equal quality otherwise. This is contingent upon the choice
of an effective and meaningful ∆o, and further does not reflect the
probabilistic nature of viewer responses.

In this work, we present a probabilistic pairwise-preference pre-
dictor (P4), which uses a Bayesian statistical model for pairwise
preferences that is a function of properties of degraded images in-
cluding reference image, distortion type, and an ensemble of QE
scores. Alternate or additional QEs can be incorporated into the en-
semble easily. However, in this study we choose six full-reference
(FR) QEs: SSIM [7], IW-SSIM [8], PSNR-HVS-M [9], VIF [10],
VSNR [11], and PSNR. In addition to creating a point estimate of
the probability that one image is preferred relative to another, our
model also provides an interval prediction based on its confidence in
this point estimate.

Precisely because of the reduced training requirement and the
need for large-scale data collection, we collect subjective data us-
ing Amazon Mechanical Turk (AMT). Prior studies that have ex-
plored using AMT [5, 12, 13, 14] or similar crowd-sourcing plat-
forms [15, 16] have carefully considered worker reliability, consis-
tency, and screening. The general consensus is that, given proper
task formation, workers are usually sufficiently reliable. Further-
more, we believe the diversity of the viewers on AMT actually en-
ables our model to accurately capture underlying viewer variation.

2. SUBJECTIVE TESTING
2.1. Background

The three largest publicly available subjective image quality datasets
(see review article [17]) are the LIVE [18], TID2008 [19], and CSIQ
[20] databases, which are summarized in Table 1. These subjective
tests, using up to 30 reference images and up to 17 types of distor-
tion, have been used a benchmark to evaluate the performance of
QEs. These subjective datasets differ by the type of decision or label
made by each viewer. Experiments requesting absolute scores from
viewers typically request comparisons across different content [18],
while many paired comparison experiments explicitly avoid such
comparisons [19, 21, 5]. Nonetheless, all three report a subjective
estimate of absolute visual quality for each image.

2.2. Our subjective tests

We begin by choosing a collection of reference, or source, images.
The first 30 reference images are taken from the CSIQ database [20].



Name
# ref.

images
#

distortions
# HRC per

ref img

total #
distorted
images

LIVE 2 29 5 26-28 779
CSIQ 30 6 28-29 866
TID2008 25 17 68 1700
RST90 90 4 118-119 10,690

Table 1. Overview of subjective tests

Class Ref. images Distortions
# pairs
stage 1

# pairs
stage 2

I Same Same 0 303
II Same Different 7601 4951
III Different Same 9492 5462
IV Different Different 0 5115

Table 2. Pair selection for our subjective test.

Each of the next 60 reference images was captured using a high-
quality high-resolution digital camera from an outdoor scene. Each
image is filtered, downsampled, and cropped to produce 512*512
pixels. Among these 60 images, there are 16 animal pictures, 17
landscapes, and 27 structures (including buildings and sculptures).
The spatial information (SI) and colorfulness (CF) scores for each
reference image are computed as described in [17], and indicate a
slightly wider range of CF and SI than [18, 19, 20].

Next, we choose the four distortion types that appear in nearly
all image quality databases: Gaussian blur, JPEG-2000 and JPEG
compression, and additive Gaussian noise. For each distortion type,
we choose 29-30 severity values, ranging from little distortion to
moderately severe, which results in a total of 118-119 distorted im-
ages for each of our 90 reference images. We create pairs of images
for a two-stage subjective test. In the first stage, we use only the
3550 distorted images obtained from the CSIQ images, while in the
second stage we use distorted images from all 90 images with an
emphasis on pairs taken from the 60 new reference images. The la-
beled pairs from the first stage are used to train our model, while the
labeled pairs from the second stage are exclusively used to validate
our model.

Pairs are constructed to emphasize important use cases of a
QE. In particular, we decompose all possible pairs into four classes,
based on whether both images share a common reference image or
a common distortion type. As in [22, 23], our experiment contains
comparisons across different reference images. Table 2 summarizes
the number of pairs we choose in each class. In the second stage,
13860 pairs have only images from the new 60 reference images,
while 1971 have one image from the 30 CSIQ reference images and
the other image from one of our new reference images.

Using AMT, image pairs were presented in random order (and
random left/right assignment), and the viewers, who were naive to
the purposes of the experiment, were instructed to “click on the im-
age with better visual QUALITY between the two images. Choose
the image with the better technical quality, not the image content you
prefer.” Each task for a viewer contained 10 pairs, and each viewer
was limited to a maximum number of 300 pairs. No image pair was
rated by more than one viewer by design to obtain more efficient
estimates of the effects of distortions. In total, 450 unique viewers
participated in our study, and viewers whose data were clearly unre-
liable or showed extreme bias were rejected.

3. THE MODEL

We use logistic regression to model which image from a pair is cho-
sen by a viewer. The model we fit is a multilevel Bradley-Terry
model, where we model the latent subjective quality of each image
as a function of (1) the reference image, (2) the distortion type ap-
plied to the image, and (3) six QEs, where the effect for each QE
differs by distortion type. Modeling subjective quality as a function
of image-level variables allows us to generalize our model to images
outside those in our training data, so that we can make predictions
about viewer preferences for new image pairs.

Let Yi = 1 if the subject chose the left image in pair i, and Yi =
0 if the subject chose the right image, for image pairs i = 1, ..., N ,
where in our training data, N = 13, 674 (this represents 80% of the
image pairs from stage 1 of our experiment, where the other 20%
is held out for testing). Let V [i] denote the viewer of image pair
i, for viewers w = 1, ...,W = 249. Let L[i] and R[i] denote the
reference image of the left and right image, respectively, in pair i,
for reference images j = 1, ..., J = 30. Let Dist-L[i] and Dist-R[i]
denote the distortion types applied to the left and right images in pair
i, for distortion types d = 1, ..., D = 4. Last, let XQE-L

k[i] and XQE-R
k[i]

be the objective quality score for the kth QE applied to the left and
right images in pair i, respectively, for QEs k = 1, . . . ,K = 6. The
QE scores are transformed (if necessary) and scaled to have a mean
of zero and standard deviation of one so that their estimated effects
are comparable; all increase monotonically with image quality.

The model is a multilevel (i.e. hierarchical) Bayesian logistic
regression model:

Yi ∼ Bernoulli(pi),

log
� pi
1− pi

�
= αviewer

V [i] + λLeft
i − λRight

i (1)

λLeft
i = αimage

L[i] + αdistortion-type
Dist-L[i] +

K�

k=1

βobjective
(k,Dist-L)[i] ×XQE-L

k[i] ,

for image pairs i = 1, ..., N , where λRight
i is defined analogously to

λLeft
i , and these represent the latent subjective qualities of the right

and left images, respectively.
We use normal priors for the viewer, reference image, distortion-

type, and QE effects:

αviewer
v ∼ N(µviewer,σ2

viewer),

αimage
r ∼ N(0,σ2

image),

αdistortion-type
d ∼ N(0,σ2

distortion-type),

βobjective
kd ∼ N(µobjective

k , τ2
objective-distk )

µobjective
k ∼ N(µ0, τ

2
objective),

We use weakly informative half-t priors for the standard deviation
parameters σviewer, σimage, σdistortion-type, τobjective-distk (for k = 1, ..., 6),
and τobjective, and N(0, 1) priors for µviewer and µ0 [24].

We fit the model using the the Bayesian MCMC software pack-
age, JAGS (“Just Another Gibbs Sampler”) [25]. The model con-
verges almost immediately, although it takes about 70 minutes to
sample 5000 iterations from the posterior distribution of all 327 un-
known parameters. We discarded the first 1000 iterations as burn-in,
and kept every 10th iteration from the next 4000 iterations as our
posterior sample, for each of 3 independent chains, giving us a total
of 1200 posterior samples, each with 327 parameters.
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Fig. 1. Interval estimates of αdistortion and βobj-sum

4. INFERENCE AND GOODNESS-OF-FIT

First, we describe point estimates and interval estimates for vari-
ous parameters in our model. The mean left/right bias in the pop-
ulation of subjects, µviewer, was about 0.06 (on the logistic scale).
This corresponds to a probability of a random viewer picking the
left image with probability 51.5%. The viewer bias effect, however,
was small compared to the effects of the other factors in the model.
The estimated standard deviations for the viewer, reference image,
and distortion type effects were σviewer ≈ 0.19 (0.04), σimage ≈
0.44 (0.07), and σdistortion ≈ 1.03 (0.60), where standard errors are
listed in parentheses. In other words, of these three factors, the dis-
tortion type explained the most variation in the outcome, and the
viewer bias explained the least variation. To interpret these group-
level standard deviations, consider that on the logistic scale, holding
all other variables at their observed values, choosing two different
distortion types at random would induce an expected change in the
probability of choosing the left image of about 25% – a large effect.
Randomly choosing two reference images, or two viewers, would af-
fect the probability of choosing the left image by about 12% or 5%,
on average, respectively.

Regarding the most extreme variations, the most biased viewers
in our experiment had approximately a 44% and 59% probability of
choosing the left image, holding all other variables constant. The
most preferred reference image, all else held constant, was “sunset-
color” (74.0% chance of being preferred compared to the average
reference image), and the least preferred was “fisher” (26.7%).

The estimated effects for distortion types and QEs are pictured
in Figure 1. Figure 1(a) shows that JPEG and JPEG2000 distortions
are preferred over Blur and Noise distortions across the images in
our collection, where a JPEG-distorted image would be preferred
over a noise-distorted image (all else held constant) about 80% of
the time, for example. The 24 objective quality effects, βobjective

kd (for
k = 1, ..., 6 and d = 1, ..., 4), are more complicated to interpret,
since all six QEs are highly correlated with each other. To summa-
rize their effects, we estimate the posterior distribution of the sum of
their effects for each distortion type. Define the “Total QE effect”
for each distortion type d as βobj-sum

d = ΣK
k=1β

objective
kd . The estimates

of these sums are precise – they are 1.50, 1.86, 0.57, and 1.86 for
the distortion types Blur, JPEG2000, JPEG, and Noise, respectively,
with standard errors less than 0.12 in all four cases (pictured in Fig-
ure 1(b)). This means that this collection of six QEs has the strongest
association with subjective quality for JPEG2000 and Noise distor-
tion types, and the weakest association for JPEG distortions.

Second, to check the fit of the model, we make predictions on
the holdout set, which consists of 20% of the pairs in our data from
Stage 1. For each image pair in the holdout set, and for each posterior
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(a) Binned Residual Plot (Holdout Set, n = 3,419)
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(b) Binned Residual Plot (Validation Set, n = 15,831)
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Fig. 2. (a) Binned residual plot for the holdout set; RMSE is 3.5%.
(b) Binned residual plot for the validation set; RMSE is 4.9%, and
there is a slight pattern of shrinkage in the residuals. nbin = 100

sample of parameters, we compute the estimated probability that the
viewer chose the left image, and we then simulate a response from
the Bernoulli distribution with this probability. From these simula-
tions, we draw binned residual plots to look for lack of fit in our
model. Figure 2(a) contains a binned residual plot where the data
points (pairs) are binned by their posterior mean probability of the
viewer choosing the left image. The differences between the actual
proportion of viewers who chose left in each bin and the predicted
proportions are centered around zero, with no discernible pattern,
and the 50% and 95% intervals have the advertised coverage. This is
a strong indication that the model fits well with respect to data that
comes from the same population as the data to which the model was
fit. Note, however, that when making these predictions, we knew
the identities of the viewers of the holdout pairs, we knew the ref-
erence images, and we knew the distortion types; this is unlikely to
be true for paired-comparison predictions “in the wild”. We discuss
predictions for new image pairs in Section 5.

Third, knowing that the model fits the data, the last question re-
maining is, “How accurate is the model?”. We recommend two easy-
to-interpret measures of predictive accuracy for our model. First, we
measure the Root Mean Squared Error (RMSE) of our model’s pre-
dictions of the percentage of pairs in which the viewer prefers the
left image, for some standard bin size. Here, we choose nbin = 100
pairs. In Figure 2(a), this is simply the RMSE of the differences
between the black points and the horizontal line at zero. For our
holdout data, the RMSE for nbin = 100 is 3.5%, and the errors are
approximately normally distributed. This means that about 2/3 of the
time our model’s prediction will be within 3.5% of the true percent-
age. We also compute the misclassification error, where we use the
posterior mean of P(Y holdout

i = 1) to classify each pair as either hav-
ing its left or right image chosen by the viewer. The misclassification
rate was 22.8% for the pairs in our holdout set. For comparison, in
a sample of 400 image pairs labeled by two experts, the experts dis-
agreed on 16% of image pairs – providing a rough gold standard for



the performance of any statistical model fit to this data.

5. APPLYING THE MODEL TO NEW DATA

In this section, we describe how to use our model to make predictions
for new image pairs outside the training population. The basic prin-
ciple is simple: in the absence of knowing the effect of a particular
variable (say, the viewer effect), we must sample an effect from the
distribution of that variable’s effects (i.e. from the N(µviewer,σ2

viewer)
distribution). This propagates our uncertainty of a given variable’s
effect through the model into our predictions.

The precise steps are as follows. For each posterior sample g =
1, ..., G (where G = 1200 in this paper), let θ(g) denotes the gth
sample of the parameter θ in the set of posterior samples, and let
L,R denote the Left and Right images in the new pair, respectively.
If we don’t know the viewer, reference image, or distortion type for
either L or R:

1. Draw a viewer effect from N(µ(g)
viewer,σ

(g)
viewer).

2. Draw a reference image effect for L from N(0,σ(g)
image).

3. Draw a distortion type effect for L from N(0,σ(g)
distortion-type).

4. Draw a QE effect for the kth QE score for L from
N(µobjective (g)

k , τ (g)
objective-distk

), for k = 1, ..., 6, since we assume
that we don’t know the distortion type d for L.

5. Repeat steps 2-4 for R, unless it is known that R and L share
a common reference image or distortion type. In those cases,
set the effect for R equal to that drawn for L.

6. Compute the estimate of P(Y new
i = 1) from Equation 1.

Now we have the posterior distribution of the probability of choos-
ing the left image for each new image pair, which is wider (i.e. larger
standard deviation) because now we don’t know the viewer, or ref-
erence image, or distortion type. When either the reference images
or the distortion types are known to be the same, then the posterior
distribution is narrower, but not as narrow as when all variables are
known.

For an illustration of making a prediction for a new image pair,
see Figure 3. In this example, we look at an image pair from the
holdout set in which reference image 10 (“family”) is shown on
the left, reference image 2 (“aerial city”) is shown on the right, the
viewer w = 74 (from the training data), the distortion type is noise
for each image, and the six QE scores are known for each image.
If we make a prediction for this image pair using information from
training, namely, that α̂viewer

74 ≈ 0.01, α̂image
10 ≈ −0.05, and α̂image

2 ≈
−0.10, and factoring in the QE effects, we estimate the posterior
mean of the probability of choosing the left image is 0.35, with a
standard error of about 0.06. If this image pair were new, however,
and we hadn’t known the viewer, and the reference images were new
and different from each other, and if we assumed that we knew the
distortion types were the same (allowing these values to cancel), we
would estimate the probability of choosing the left image to be 0.38
with a standard error of 0.19. In other words, the probability would
move toward 50%, and our confidence in the probability estimate
would be lower.

Next we check the accuracy of our predictions for new viewers
and new reference images by making predictions on our validation
set (Stage 2 of our experiments), which contains N validate = 15, 831
image pairs, with new viewers and new reference images not in the
training data. Following the procedure outlined above, we computed
G = 1200 samples from the posterior distributions of the probabil-
ity of choosing the left image in each of the validation image pairs.

0.0 0.2 0.4 0.6 0.8 1.0
P(Choose Left Image)

Po
st

er
io

r D
en

si
ty

Pair from Training
New Pair

Fig. 3. Density estimates for the posterior distribution of
P(Y holdout

i = 1) given that we (a) know the viewer, distortion types,
and reference images, and (b) know none of these variables (al-
though we assume unequal reference images and equal distortion
types to match the original training data).

Among the 246 viewers who participated in Stage 2, 45 of them had
also participated in Stage 1, such that we had estimated their viewer
effects from our training data. Also, some of the images in the vali-
dation data had reference images in common with images from Stage
1. For pairs with known viewer effects or reference image effects,
we used the estimated effects from training, but for new viewers and
reference images, we followed the outlined procedure.

Figure 2(b) contains a binned residual plot for predictions made
on the validation set. We use bin size nbin = 100, but show only 34
bins in Figure 2(b), to create a visual comparison to the analysis on
the holdout set in Figure 2(a). The RMSE of the predicted percent-
ages is 4.9%, and the pattern of residuals indicates that the model is
“shrinking” estimated probabilities slightly too far toward 50% for
pairs in which the predicted probability is between 20% and 40%.
This could be a sign that the variation between viewers or reference
images in Stage 2 is less than that of Stage 1, and hence the estimates
of σviewer and σimage from the training set were too large, and induced
extra randomness in predictions. The misclassification rate for the
validation set was 19.6%, substantially lower than that of the hold-
out set. If we look at misclassification rate with respect to the four
classes of pairs described in Table 2, we see slight variation in the re-
sults: the rates for each class are 19.1%, 24.2%, 15.2%, and 17.8%,
for classes I - IV, respectively. Recall that the model was trained
only using points from Classes II and III. Further experiments can
be conducted to improve the fit and accuracy of the model, and shed
light on whether the effects of new distortion types are accurately
predicted by our model.

6. CONCLUDING THOUGHTS
We propose a probabilistic pairwise-preference predictor (P4),
which estimates the probability that a given image in a pair will
be preferred by a random viewer, and includes interval estimates to
gauge prediction uncertainty. Our model is by no means complete,
and a more complex model may need to incorporate further interac-
tions, such as interactions among different QEs. Although only four
types of distortions were included in this study, our approach can
be further generalized to include other common distortion types. In
fact, due to the robustness of the data collection process for the pair-
wise preference subjective tests, the data we collected for this work
can also be reused and incorporated into a future data collection
effort with other types of distortions.
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